Programs
Doctoral Degree Programs
Master's Degree
Graduate Certificate Programs
Downtown Campus Programs
Integrated Programs

contact us

Location:

Graduate School & Research Building (GSR)

Suite 2.210

Office Hours:

Monday - Friday
8 a.m. to 5 p.m.

Contact US:

Phone: (210) 458-4331

Fax: (210) 458-4332

Admissions Email: Graduate.Admissions@utsa.edu
Recruitment Email: GradRecruit@utsa.edu

Electrical Engineering (M.S.)

Basic Degree Information/Description

The Master of Science degree in Electrical Engineering is designed to offer students the opportunity to prepare for leadership roles in careers with industry, government, or educational institutions. A thesis option is offered for students who want the opportunity to obtain some expertise in research. A nonthesis option is available for students who want a practical industrial applications-oriented degree.

Why pursue an M.S. in Electrical Engineering?

  • The Ph.D. program in Electrical Engineering, M.S. program in Electrical Engineering, and M.S. program in Computer Engineering offer opportunities in both advanced course work and research project to prepare students for leadership roles in engineering careers with industry, government, or educational institutions.
  • Our graduate programs stress both theoretical and practical aspects of Electrical and Computer Engineering by combining the teaching and research expertise of the University community with the resources of other San Antonio research institutions.
  • The Graduate Faculty in Electrical and Computer Engineering are very active in conducting cutting-edge research projects which provide both research experiences and financial supports for our graduate students.

Degree Requirements:

  • Thesis Option: 30 Semester Credit Hours
  • Non-Thesis Option: 33 Semester Credit Hours

For a complete list of degree requirements please see the Graduate Catalog.

Admission Requirements and Deadlines

Admission Prerequisites:

  • Required Degree: A bachelor’s degree in electrical engineering, or in a related fields for exceptional candidates.
  • Other Degree Requirements: A student who does not qualify for unconditional admission may be admitted on a conditional basis as determined by the Computer Engineering Graduate Studies Committee. Applicants with an electrical or computer engineering background who wish to continue their education but do not intend to pursue the Master of Science degree in Computer Engineering are encouraged to seek admission as special graduate students.

Application Requirements:

  • General University Requirements:A degree seeking applicant must meet university wide requirements.
  • Application: A complete Graduate School application.
  • Transcripts: Official transcripts from all institutions attended. All international transcripts must be recorded in English or officially translated to English.
  • Resume or Curriculum Vitae: None.
  • Letters of Recommendation:None.
  • Statement of Purpose: None.
  • Test Scores: General GRE, not older than five years.
  • Other: a minimum grade point average of 3.0 in the last 60 semester credit hours.
  • Evaluation of Foreign Credentials: U.S. Citizens (Domestic) or permanent residents who have earned university level credit from foreign institutions are required to submit all official transcripts from foreign institutions along with an evaluation of the transcripts from an approved Foreign Credential Agency.
  • An approved evaluation requires a detailed course-by-course evaluation. Summaries will not be accepted.
  • The Foreign Credentials Service of America (FCSA) is a private corporation that provides evaluations of foreign school credentials. The application is available at: Application for Credentials Evaluation.
  • International Applicants:
    • IELTS: Minimum score of 6.5.
    • TOEFL: Minimum scores of 79 or 550 for Internet or paper versions, respectively.
    • Additional Requirements: A degree seeking applicant must meet international graduate student admission requirements.

Career Options Available for an M.S. Electrical Engineering Graduate

  • After graduation, our M.S. and Ph.D. graduates are employed as engineers or researchers in research firms and industries.
  • Some of our former doctorate students are working in universities as faculty members.

Research taking place in the M.S. Electrical Engineering program

The research in our graduate programs at the Department of Electrical and Computer Engineering mainly focuses on five concentrations:

  • Communications: Fiber optic communications, fiber optic sensors, coding and error correction, control of communication networks, positioning and navigation algorithms, GPS, signal processing for communications, digital communications systems, wireless mobile communications, information theory, and signal detection and estimation.
  • Computer and Digital Systems: Parallel and distributed computing, routing in computer networks, network intrusion detection, computer architecture, ASICs, RISC processors, microprocessor based systems, VLSI design and testing, CAD tools, HDL modeling and FPGA implementation, computer graphics hardware and software parallelism, visualization techniques, information science, optimization and forecasting, digital systems, multimedia and network processors, low power VLSI systems, and reconfigurable computing
  • Signal and Image Processing: Signal and image processing, visual communication, and quantum information processing and communication, signals and systems, tomographic imaging, processing biomedical images FISH (Fluorescence In Situ Hybridization), theory of fast unitary transforms, robust linear and nonlinear filters, morphological image processing, statistical signal processing, Bayesian methods, sampling-based approaches.
  • Systems and Control: Intelligent systems, neural networks and fuzzy systems, adaptive learning, data mining, networking, diagnosis and prognosis, health monitoring, and robotics and automation, Complex Systems, Computational Intelligence, System of Systems Engineering, Mechatronics, Neuro-fuzzy techniques, robotics and intelligent networks/systems, robust and adaptive control, stabilization of nonlinear systems, optimal control, homogeneous systems theory, aerospace systems and power plants.
  • Microelectronics and Microdevices: This concentration area provides students with balanced training in theory and experimentation in the areas of analog and mixed signal integrated circuit design, microsystems technology (MEMS), RF and Microwave devices. Research emphasis covers such diverse topics as wireless transceivers, data converters, power management, VLSI, micromirror arrays, MEMS microwave devices, Bio-MEMS, photonic crystals, microfluidics, sensor arrays, microchemical reactors, micropropulsion and energy harvesting schemes. Graduates are well qualified to seek employment in semiconductor manufacturing, aerospace, telecommunications, petrochemical industry, food and chemical processing, microelectronics research and development, health care and other industries requiring analog circuitry, sensing schemes or the application of microdevices.
  • For more research projects, please refer to our website: http://ece.utsa.edu/research/faculty-research.html

Contact Information

Graduate Advisor of Record: Wei- Ming Lin, Ph.D.
Email: wei-ming.lin@utsa.edu
Telephone: (210) 458-5529

Degree Website: http://ece.utsa.edu/programs/graduate/index.html

Degree Catalog Link: http://www.utsa.edu/gcat/chapter6/COE/ecedept.html#msee

UTSA Advanced Visualization Laboratory Tour

Funding Opportunities

Course Scheduling and Offerings

Our graduate courses are offered mostly in afternoon and evening. About half of courses are taught in the afternoon (2PM-5PM) and another half in the evening (5PM- 8:15PM).

important dates

View Calendar